MILLSWOOD

250W PMU V2

PRODUCT MANUAL

1 General Description

The original 250W Power Management Unit provided up to 250 Watts of onboard electrical power generation for small to medium-sized UAVs. This updated version provides up to 500W and supports input voltages exceeding 130V. The physical form factor is unchanged. A variant manufactured for Currawong Engineering is available with an optional engine starter.

The 250W PMU simplifies UAV power distribution by providing multiple power outputs, which are individually programmable for voltage as well as being battery-backed. Dual (redundant) battery support is also included as standard.

Figure 1 – 250W PMU

The PMU connects to a suitable brushless DC electric motor, which is in turn driven by the aircraft's primary power plant, usually an internal combustion engine.

2 Features

- Buck-boost converter allows electrical power generation over 7:1 RPM range.
- Multiple independent, individually user-programmable power outputs:
 - Avionics: 12 21 VDC
 - Payload: 12 21 VDC
 - Servo: 5 12 VDC
- Outputs are battery-backed and switchable (on/off) via hardware signal or remotely via command.
- Dual (redundant) battery support. The PMU includes two independent and identical battery chargers. Supported battery types include:
 - LiPo: 5S, 6S
 - LiS: 8S, 9S, 10S
 - LiFe: 6S, 7S
- Industry-standard 28 VDC output (available during power generation and when the PMU is connected to umbilical power).
- RS232 and CAN control and monitoring interfaces provide extensive monitoring and reporting of voltages, currents, battery charge status and temperatures.
- Optional engine starter may be activated locally via a momentary push-button switch, or remotely via command to facilitate in-flight engine restarting (Currawong Engineering variant).
- Weight: 315 grams (11.1 ounces).
- Dimensions: 124.4 x 85.0 x 32.5mm.

This page intentionally left blank.

3	5	Contents	
1		General Description	. 1
2		Features	
3		Contents	. 3
4		Operation	. 4
	4.	•	
	4.		
	4.	3 Shutdown inputs	
		4.3.1 Avionics, Servo, Payload	
		4.3.2 Master	
	4.	4 Temperature monitoring	
		4.4.1 Internal	
		4.4.2 External	
5		Configuration	
6		Connectors	
Č		1 X1 – BLDC motor	
	0	6.1.1 Engine starting	
	6	2 X2 – Batteries	
	0.	6.2.1 Choosing batteries	
		6.2.2 Additional considerations when choosing battery voltage	
		6.2.3 Battery chargers	
		6.2.4 Low battery voltage cut-out	
		6.2.5 Minimum battery voltage requirement	
	6	3 X3 – Avionics	
	6.		
7	0.	Front Panel Arrangement	
'	7.	•	
	7.		
8		Specifications	
0	8.	•	
	8.	-	
	8		
	0.	8.3.1 Power outputs	
		8.3.2 Battery inputs	
		8.3.3 Communications interfaces	
		8.3.4 Digital and analog inputs	
		8.3.5 Monitoring	
	Q	4 Typical Characteristics	
	0.	8.4.1 28V Buck-Boost converter efficiency	
		8.4.228V Buck-Boost converter maximum output power	
		8.4.3 28V Buck-Boost converter temperature rise	
	8.	•	
	0.		
9		5	
9	9	Document version history	
	-		
	9.	2 2.0 -> 2.1	Z 1

4 Operation

The 250W PMU takes power from 4 possible sources and creates 4 regulated output rails as shown in Table 1 and Table 2 below:

Power inputs						
BLDC motor	3-phase AC input					
Umbilical	DC input					
Battery A	Bi-directional					
Battery B	Bi-directional					

Table 1 – Power inputs

Power outputs							
28VDC bus	DC output						
Avionics	DC output						
Servo	DC output						
Payload	DC output						

Table 2 – Power outputs

Two of the four power sources are batteries. The PMU draws power from the batteries when other power sources are not present, or charges them when other power sources are present.

The 28VDC bus is only maintained at 28V when electrical power generation (from the BLDC motor) is occurring, or umbilical power is present. When operating from battery power, the 28VDC bus assumes the highest battery voltage available.

The avionics, servo and payload outputs are all user-configurable for voltage, and the payload output can be shed automatically when the PMU is operating from battery power alone.

4.1 Internal architecture

The internal architecture of the PMU is shown in Figure 2 below. Only the main power pathways are shown. Diodes shown are not physical diodes; they are "ideal diodes" implemented with FET switches.

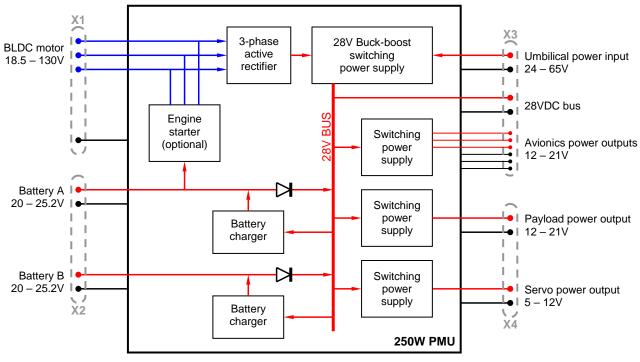


Figure 2 – PMU internal architecture

One of the main features of the PMU is that electrical power generation can occur over a very wide RPM range – up to 7:1 if the system is designed optimally. This is possible because the main 28V switching power supply (shown in the top right-hand corner of Figure 2 above) creates a regulated 28VDC bus regardless of whether the input voltage is less than or greater than 28V.

4.2 Battery backup

The Avionics, Servo and Payload outputs are all battery-backed. In other words, when electrical power generation and umbilical power are not present, outputs are maintained using battery power.

4.3 Shutdown inputs

4.3.1 Avionics, Servo, Payload

The Avionics, Servo and Payload outputs each have a dedicated shutdown input pin. When a shutdown pin is pulled low (via a switch or open collector output), the respective output is turned off. These shutdown inputs are implemented in hardware and override software control of output state.

4.3.2 Master

A master shutdown input is also provided which shuts everything down and allows the batteries to remain connected without discharging.

4.4 Temperature monitoring

4.4.1 Internal

The internal temperature of the PMU is sensed and reported, and if the internal temperature exceeds a pre-set limit the main Buck-Boost converter shuts down. Thermal shutdown means that electrical power generation and battery charging cease, but the avionics, servo and payload outputs are not affected as long as at least one battery is connected. During thermal shutdown, the 28VDC bus assumes the highest available battery voltage.

4.4.2 External

A number of external temperature sensors may be connected to the PMU, and the resulting values are all reported in the telemetry streams. Battery A, Battery B, and the BLDC motor itself may all be thermally monitored. A 10k NTC temperature sensor mounted in thermal contact with the respective device is all that is required. The other end of the temperature sensor should be connected to ground. Polarity is unimportant for NTC type temperature sensors.

Currently external temperature sensing does not trigger any actions – it is merely for operator information.

5 Configuration

A Windows application that provides easy access to most of the 250W PMU's features may be downloaded from <u>https://millswoodeng.com.au/resources.html#250w_pmu</u>. Connect the PMU to a PC using the PMU's RS232 interface using an RS232 to USB adapter. The configuration utility allows the PMU's settings to be customised (and written to the PMU).

😻 250W PMU Configuration Utility	– 🗆 🗙		
About Configure Monitor External sensors Settings Output voltages Avionics (Va) 12.0 Volts Servo (Vs) 6.0 Volts Payload (Vp) 12.0 Volts	Initial state / miscellaneous features Avionics and servo outputs Payload output Battery charger A Battery charger B	Packet streaming Packet period (Pp) Packets streamed (Ps)	1.0 ↔ Seconds ✓ Voltages ✓ Currents ✓ Battery statuses
Batteries (Vb) 21.0 Volts	Shed payload when not generating Engine starter		Miscellaneous Read
Baudrate (Cbrp) 1 Mb/S ∨ Address (Ca) 1 ↓	Cranking time (CT) 5.0 S		Write Verify
RS232 Port: COM6 ~ Open Res	can Update firmware Res	et	Start Stop
Ready			

Figure 3 – 250W PMU configuration utility settings

The configuration utility also allows the PMU to be controlled and monitored in real-time.

🐲 250W PMU Configuration Utility	– 🗆 🗙
About Configure Monitor External sensors	
UMBILICALD PHASE AD PHASE CD ACTIVE RECTIFIER MAIN BUCK-BOOST DC-DC CONVERTER W ENABLE T=+035C BUCK DC-DC CONVERTERS W ENABLE W ENABLE	28.3V +00.0A 0W D AVIONICS 12.0V 00.0A 0W
BATTERY A 01.4V -00000mAH 0W -00.1A 0W	06.1V 00.0A
BATTERY B 01.4V +00000mAH 00.1A 0W CHARGER ✓ ENABLE	D PAYLOAD 12.1V 00.0A 0W
RS232 Port: COM7 V Close Rescan Update firmware Reset	Start Stop
Configuration settings written to device.	

Figure 4 – 250W PMU configuration utility monitoring

6 Connectors

Four connectors required to interface with the PMU, two of each type listed in Table 3 below. The connectors specified are from the Harwin M80 Datamate MixTek series. Connectors are available ex-stock from the major online distributors.

Connector	Harwin part number	Online distributors
X1, X3	M80-4C11205F1-04-325-00-000	Mouser (PN: 855-M804C11205F14325) Digi-Key (PN: 952-1264-ND)
X2, X4	M80-4C10405F1-04-325-00-000	Mouser (PN: 855-M804C10405F14325) Digi-Key (PN: 952-1258-ND)

Table 3 – Connector part numbers

6.1 X1 – BLDC motor

Connect the 3 terminals of a suitable brushless DC motor to pins A, B and C of X1. Over the normal operating rpm range that electrical power generation is desired, the peak voltage should be in the range 18.5 to 130V. Peak voltages up to 140V are tolerated, but the main Buck-Boost will shut-down during periods of over-voltage to protect itself.

Pin D of X1 is a low-impedance ground that may be bonded to airframe ground if a chassis earth return system is implemented. Otherwise, connection of this pin is optional.

Connection of Hall sensors is optional, although the PMU requires Hall input 1 to be connected if monitoring of the BLDC motor's speed is required. Hall power and ground are provided for convenience.

Pin	Name	Туре	Description
X1:A	BLDC phase A	I/O	Connect to one of the 3 BLDC motor terminals.
X1:B	BLDC phase B	I/O	Connect to one of the 3 BLDC motor terminals.
X1:C	BLDC phase C	I/O	Connect to one of the 3 BLDC motor terminals.
X1:D	Airframe ground	Ground	Optional connection.
X1:1	Hall 1	Input	Connect to open-collector output of Hall sensor 1.
X1:2	Hall 2	Input	Connect to open-collector output of Hall sensor 2.
X1:3	Hall 3	Input	Connect to open-collector output of Hall sensor 3.
X1:4	Master shutdown	Input	Shorting to ground turns the PMU off. Leave open- circuit if functionality not required.
X1:5	Hall power	Output	+5VDC power output for Hall sensors.
X1:6	Hall ground	Ground	Ground connection for Hall sensors.
X1:7	Arm	Input	Hardware interlock to arm/disarm engine starting. Shorting to pin X1:8 enables engine starting. <i>For</i> <i>safety reasons this is a purely hardware interlock</i> <i>that cannot be overridden.</i>
X1:8	Arm ground	Ground	Ground connection for arm input.
X1:9	BLDC motor temperature sensor	Input	Connect to a 10k NTC temperature sensor that is in intimate thermal contact with the BLDC motor. Motor temperature sensing is optional.
X1:10	Sensor ground	Ground	Ground reference for motor temperature sensor.
X1:11	Start	Input	Shorting to pin X1:12 starts the engine.
X1:12	Start ground	Ground	Ground connection for start input.

Pin 4 is a master shutdown input. Be careful not to accidentally ground this pin.

Table 4 – X1 pin descriptions

6.1.1 Engine starting

A fully-integrated (internal) engine starter is available for units sourced from Currawong Engineering and their distributors. This plug-in module is manufactured and fitted by Currawong Engineering and is designed to complement their range of UAV engines and accessories.

Use of the engine starter requires the use of a BLDC motor fitted with Hall sensors, and these must all be connected to the PMU. Starting can be initiated either by switching the start pin to ground or by sending the PMU a command. In either case, the Arm pin must be low prior to attempting to start the engine.

If engine starting is required, we strongly recommend contacting Currawong Engineering (<u>www.currawongeng.com</u>) or one of their distributors for an integrated solution. The engine, BLDC motor, PMU, ECU and fuel pump can be tightly mechanically and electrically integrated resulting in a more compact and reliable propulsion and power solution.



Figure 5 –Corvid 29 engine package from Currawong Engineering

Note that the Currawong Engineering variant of the 250W PMU is slightly different to the Millswood Engineering offering. The Currawong Engineering variant has a single (Avionics) LED on its front panel, and is a different colour. (The device shown in Figure 5 is gold; current production is silver). Other electrical and mechanical specifications are identical.

6.2 X2 – Batteries

The PMU supports the connection of up to two batteries, and these are managed completely independently. Internal low-loss battery switching is implemented such that disconnection or failure of either battery – even to a dead short – has no effect on operation of the PMU as long as an alternative source of power to the PMU is present (which may be battery, electrical power generation or umbilical power). It is possible – although perhaps not all that sensible – to operate the PMU with no batteries at all.

If engine starting is anticipated then Battery A must be fitted, as cranking current is drawn solely from Battery A. Battery B is highly recommended if in-flight engine re-starts are anticipated to prevent loss of electrical power if Battery A becomes depleted from repeated cranking.

Pin	Name	Туре	Description
X2:A	Battery A +	I/O	Connect to positive terminal of Battery A.
X2:B	Battery A –	Ground	Connect to negative terminal of Battery A.
X2:C	Battery B +	I/O	Connect to positive terminal of Battery B. A second battery is optional.
X2:D	Battery B –	Ground	Connect to negative terminal of Battery B.
X2:1	Battery A temperature sensor	Input	Connect to a 10k NTC temperature sensor that is in intimate thermal contact with Battery A. Battery A temperature sensing is optional.
X2:2	Sensor ground	Ground	Ground reference for Battery A temperature sensor.
X2:3	Battery B temperature sensor	Input	Connect to a 10k NTC temperature sensor that is in intimate thermal contact with Battery B. Battery B temperature sensing is optional.
X2:4	Sensor ground	Ground	Ground reference for Battery B temperature sensor.

Table 5 – X2 pin descriptions

6.2.1 Choosing batteries

The following battery types are supported:

Battery type	Fully-charged terminal voltage
LiPo: 5S, 6S	21.0V, 25.2V
LiS: 8S, 9S, 10S	20.0V, 22.5V, 25.0V
LiFe: 6S, 7S	21.6V, 25.2V

Table 6 – Supported battery types

If two batteries are fitted they must have the same terminal voltage, although they may have different mAH capacities.

The PMU does not balance battery cell voltages. If the batteries do not have internal cell balancing circuitry they should be periodically removed from the aircraft for rebalancing.

6.2.2 Additional considerations when choosing battery voltage

When operating from battery power, output voltages will always be less than the applied battery voltage, some quite significantly so. Each switching power supply has its own particular voltage headroom requirements that limit the maximum possible output voltages.

As a rough guide, if the highest output voltage is greater than 15V, then 6S LiPo (or equivalent) should be used. If the highest output voltage is less than 15V, then 5S or 6S LiPo (or equivalent) may be used. Using higher battery voltages is generally preferable as it gives greater headroom for the various switching converters and therefore longer running times when electrical power generation is not occurring.

Maintaining high output voltages from battery power alone is problematic. Even with 6S LiPos, under sustained load the battery voltage will eventually fall to the point where outputs come out of regulation due to having insufficient voltage headroom. Connecting peripheral devices directly across batteries is possible but not recommended, as the battery energy measurements will be invalid, and if the current drawn averages more than 1.2Amps the battery will never be charged.

Connecting peripheral devices that require a high voltage to the 28VDC bus is a better solution, as the 28VDC bus tracks the battery voltage very closely when electrical power generation is not occurring. The battery energy measurements will also be maintained correctly with this arrangement. Obviously this requires that the peripheral devices can tolerate 28V.

6.2.3 Battery chargers

Battery charging occurs when the battery voltage is less than the configured battery voltage minus 1V. Batteries with less than 64% of their configured voltage are considered dead and will not be charged. This corresponds to a LiPo cell voltage of 2.7V/cell.

Charging ceases when the battery voltage has risen to within 0.5V of the configured battery voltage and the charging current is less than 0.2A, and these 2 conditions have been maintained for 25 seconds. There is a 5 second guard time before charging will recommence, to prevent rapid charger cycling with high-ESR batteries.

Batteries are managed independently. Charge termination is reported in flag register R0 bits 2 and 3.

6.2.4 Low battery voltage cut-out

Low battery voltage cut-outs are implemented for the avionics, servo and payload outputs. Cut-outs only occur if battery power is the sole source of power available to the PMU. Cut-out thresholds are calculated from the configuration value for battery voltage V_B , so it is important that this value is set correctly.

The payload output shuts down when the measured battery voltage falls below 76% of the configuration value for battery voltage. This corresponds to a LiPo cell voltage of 3.2V/cell.

The avionics and servo outputs shut down when the battery voltage falls below 64% of the configuration value for battery voltage. This corresponds to a LiPo cell voltage of 2.7V/cell.

If two batteries are fitted, both batteries must fall below a given threshold in order to provoke the corresponding cut-out.

Note that low battery voltage cut-out is different to payload shedding, which – if enabled – occurs in response to loss of electrical power generation.

6.2.5 Minimum battery voltage requirement

When powering-up from battery power alone, there is a minimum voltage requirement which must be met before the PMU will turn its outputs on. This is to prevent an aircraft being inadvertently flown with discharged batteries. As for the low battery voltage cut-out, the threshold value is calculated from the configured value for battery voltage V_B.

The minimum voltage required when powering-up from batteries is 88% of the configuration value for battery voltage. This corresponds to a LiPo cell voltage of 3.7V/cell.

If two batteries are fitted, only one battery needs to meet the minimum battery voltage requirement.

Example

The battery is chosen to be a 6S LiPo. The battery voltage V_B is therefore configured to be 25.2V (4.2V/cell).

When powered-up from battery, the PMU's outputs will come on if the battery voltage exceeds 22.2V (88% of 25.2V).

When operating from battery power:

- If the battery voltage falls to 19.2V (76% of 25.2V), the PMU will shutdown the payload output.
- If the battery voltage falls to 16.2V (64% of 25.2V), the PMU will shutdown the avionics and servo outputs.

6.3 X3 – Avionics

The Avionics connector provides access to a range of different functions, these being:

- 28VDC bus (output)
- Umbilical power (input)
- Avionics power (output)
- Communications (RS232 and CAN)

The 28VDC bus provides 28VDC when electrical power generation is occurring. When electrical power generation is not occurring (i.e. the PMU is operating from battery power), the 28VDC bus is maintained at the highest available battery voltage.

The Umbilical power input is intended for powering the PMU externally when the aircraft is on the ground and electrical power generation is not occurring. The recommended voltage for the Umbilical input is 24 to 65VDC, although the PMU will operate more efficiently (and run cooler) if the applied voltage is above 36VDC.

Avionics power is provided on 3 pairs of pins to simplify harness wiring. It is intended to power mission-critical flight systems such as autopilot, ECU (Engine Control Unit), etc. The Avionics output voltage is user-programmable to any voltage from 12 to 21VDC. A hardware shutdown input is provided; if this pin is pulled low the Avionics output is turned off. Hardware shutdown overrides software control.

The communication interface protocols are described in separate documents.

Pin	Name	Туре	Description
X3:A	28VDC bus	I/O	Industry-standard 28VDC output.
X3:B	28VDC ground	Ground	Ground connection for 28VDC output.
X3:C	Umbilical	Input	Connect to an external source of DC power.
X3.C	power	input	connect to an external source of DC power.
X3:D	Umbilical ground	Ground	Ground connection for umbilical power input.
X3:1	CAN H	I/O	
X3:2	Avionics shutdown	Input	Shorting to ground turns avionics power off. Leave open-circuit if functionality not required.
X3:3	RS232 Rx	Input	
X3:4	Avionics power	Output	Programmable-voltage uninterruptible power output. Intended for low-power mission-critical aircraft systems, such as autopilot, ECU, etc.
X3:5	Avionics power	Output	Duplicate of X3:4.
X3:6	Avionics power	Output	Duplicate of X3:4.
X3:7	CAN L	I/O	
X3:8	Comms ground	Ground	Ground reference for CAN and RS232.
X3:9	RS232 Tx	Output	
X3:10	Avionics ground	Ground	Ground connection for avionics power output
X3:11	Avionics ground	Ground	Duplicate of X3:10.
X3:12	Avionics ground	Ground	Duplicate of X3:10.

Table 7 – X3 pin descriptions

6.4 X4 – Servo / Payload

The Servo output voltage is user-programmable to any voltage from 5 to 12VDC, and the Payload output voltage is user-programmable to any voltage from 12 to 21VDC. Individual dedicated hardware shutdown inputs are provided; if either of these pins are pulled low the associated output is turned off. Hardware shutdown overrides software control.

Pin	Name	Туре	Description
X4:A	Servo power	Output	Programmable-voltage uninterruptible power output. Intended for driving servos via a servo bus. Can be turned off via remote command or hardware signal.
X4:B	Servo ground	Ground	Ground connection for servo power output.
X4:C	Payload power	Output	Programmable-voltage uninterruptible power output. Intended for driving payload devices via a payload bus. Can be turned off via remote command or hardware signal.
X4:D	Payload ground	Ground	Ground connection for payload power output.
X4:1	Servo shutdown	Input	Shorting to ground turns servo power off. Leave open- circuit if functionality not required.
X4:2	Payload shutdown	Input	Shorting to ground turns payload power off. Leave open-circuit if functionality not required.
X4:3	Shutdown ground	Ground	Ground reference for servo shutdown input.
X4:4	Shutdown ground	Ground	Ground reference for payload shutdown input.

Table 8 – X4 pin descriptions

Front Panel Arrangement 7

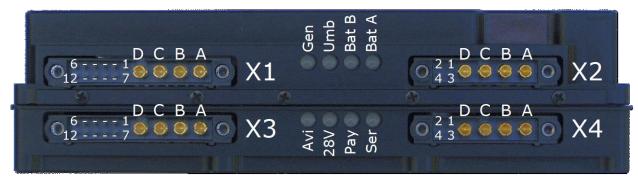


Figure 6 – Locations of connectors and visual indicators on the front panel

7.1	7.1 Connector pin locations										
X1	BLDC MOTOR	OTOR X2 BATTERIES			AVIONICS	X4	SERVO /				
Α	BLDC phase A	Α	Battery A +	Α	28VDC bus		PAYLOAD				
В	BLDC phase B	В	Battery A –	В	28VDC ground	Α	Servo power				
С	BLDC phase C	С	Battery B +	С	Umbilical	В	Servo ground				
D	Airframe	D	Battery B –		power	С	Payload power				
	ground	1	Bat A temp	D	Umbilical	D	Payload				
1	Hall 1		sensor		ground		ground				
2	Hall 2	2	Sensor ground	1	CAN H	1	Servo				
3	Hall 3	3	Bat B temp	2	Avionics		shutdown				
4	Master		sensor		shutdown	2	Payload				
	shutdown	4	Sensor ground	3	RS232 Rx		shutdown				
5	Hall power			4	Avionics	3	Shutdown				
6	Hall ground				power		ground				
7	Arm			5	Avionics	4	Shutdown				
8	Arm ground				power		ground				
9	BLDC temp			6	Avionics						
	sensor				power						
10	Sensor ground			7	CAN L						
11	Start			8	Comms						
12	Start ground			9	ground						
					RS232 Tx						
				10	Avionics						
					ground						
				11	Avionics						

7.2 Visual indicator locations

NAME	FUNCTION	GREEN	RED	DARK
Gen	Generator status indicator	Generating	Starting	Neither
Umb	Umbilical power indicator	Present	-	Absent
Bat B	Battery B indicator	Charging	Discharging	Battery absent
Bat A	Battery A indicator	Charging	Discharging	Battery absent
Avi	Avionics power indicator	On	Overcurrent	Off
28V	28VDC bus indicator	On	Overcurrent	Off
Pay	Payload power indicator	On	Overcurrent	Off
Ser	Servo power indicator	On	Overcurrent	Off

12

ground **Avionics**

ground

8 Specifications

8.1 Absolute Maximum Ratings Note 1

Symbol	Parameter	Min	Max	Unit
VBLDC	BLDC motor voltage, peak-to-peak Note 2	-140	+140	VPP
Vимв	Umbilical input voltage	-70	+70	VDC
VBAT	Battery voltage Note 2	-30	+33.3	V _{DC}
V _{28VDC}	28VDC bus voltage Note 3	-1	+33.3	V _{DC}
VAVI	Avionics output voltage Note 3	-1	+26.7	VDC
VPAY	Payload output voltage <i>Note 3</i>	-1	+26.7	VDC
VSERVO	Servo output voltage <i>Note 3</i>	-1	+13.3	V _{DC}
V _{RS232_I}	RS232 input voltage	-25	+25	V _{DC}
V RS232_0	RS232 output voltage	-13.2	+13.2	VDC
VCAN_L	CAN L and H voltage	-42	+42	VDC
V _{CAN_H}				
VDIG	Digital inputs (Start, Hall sensors)	-10	+15	VDC
Тамв	Ambient temperature (unpowered)	-55	+125	°C

Table 9 – Absolute Maximum Ratings

Note 1: Absolute maximum ratings are those values beyond which damage to the product may occur. Functional operation under these conditions is not implied (or recommended).

Note 2: Pin protected from overvoltage by a Transient Voltage Suppressor (TVS) diode. Excursions above absolute maximum rating will be clamped, resulting in large current flows.

Note 3: Pin protected from reverse and overvoltage by a TVS diode. Excursions below absolute minimum or above absolute maximum ratings will be clamped, resulting in large current flows.

8.2 Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
VBLDC	BLDC motor voltage, peak-to-peak	18.5	130	VPP
Vимв	Umbilical input voltage	24	65	VDC
VBAT	Battery voltage (fully charged, no load)	20.0	25.2	VDC
TINT	Internal temperature	-40	+85	°C

Table 10 – Recommended Operating Conditions

8.3 Electrical Specifications (-40 to +85°C, typical values given for +25°C)

8.3.1 Power outputs

	Min	Тур	Max	Unit
Battery chargers				
Output voltage range	20.0		25.2	VDC
Output voltage accuracy		±0.1	±0.2	VDC
Charging current (per battery)	0		1.2	Add
Continuous output power (per battery)			30	W
Avionics and Payload outputs				
Output voltage range	12.0		21.0	VDC
Output voltage accuracy		±0.1	±0.2	VDC
Continuous output current capability Note 1	7.5			Add
Peak output current capability Note 2	9			A _{DC}
Continuous output power			120	W
Servo output				
Output voltage range	5.0		12.0	VDC
Output voltage accuracy		±0.1	±0.2	V _{DC}
Continuous output current capability	10			Add
Peak output current capability Note 2	12			Add
Continuous output power			120	W
28VDC bus				
Output voltage	27.3	28.0	28.7	Vdc
Continuous output power Note 3		300	450	W
Peak output power Note 3			500	W
Hall sensor power output				
Output voltage	4.8	5	5.2	V _{DC}
Continuous output current capability	50			mA _{DC}

Table 11 – Power outputs

Note 1: Derate current linearly above 16VDC to observe continuous output power specification. Note 2: Maximum of 10 seconds per minute.

Note 3: Maximum output power depends upon input voltage and ambient temperature – see Graph 2.

Current capability specifications give the minimum current that an output is guaranteed to be able to deliver.

8.3.2 Battery inputs

	Min	Тур	Max	Unit
Quiescent battery current ($V_B = 25.2V$)				
All outputs on ($V_P=12V$, $V_A=12V$, $V_S=6V$)		160	240	mA
All outputs off		100	150	mA
Shutdown (master shutdown input = low)		0.5	1.0	mA

Table 12 – Battery inputs

MILLSWOOD

8.3.3 Communications interfaces

	Min	Тур	Max	Unit
CAN (2.0B, unterminated)				
Baud rate (user-configurable)	125		1000	kb/S
RS232 (8N1)				
Baud rate (fixed)		57.6		kb/S

Table 13 – Communications interfaces

8.3.4 Digital and analog inputs

	Min	Тур	Max	Unit
Shutdown inputs (Avionics, Servo, Payload,				
Master)				
Resistance to ground to enable			1.0	kΩ
Resistance to ground to disable	200			kΩ
Arm input Note 1				
Required current capability of input switch		1.5	3	mA
Input current to disarm			15	μA
Digital inputs (Start, Hall sensors)				
High-level input voltage	3.0			V
Low-level input voltage			1.0	V
Input pull-up resistance (to +5.0V)		10		kΩ

Table 14 – Digital and analog inputs

8.3.5 Monitoring

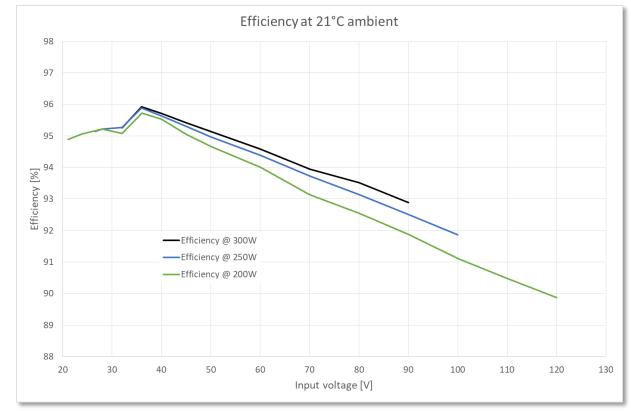
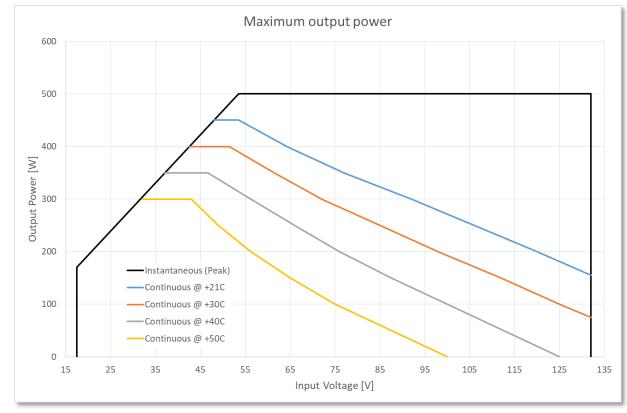

	Min	Тур	Max	Unit
Voltage monitoring				
Accuracy (battery chargers, avionics, servo, payload)		±0.1	±0.2	Vdc
Accuracy (28VDC bus)		±0.2	±0.4	Vdc
Accuracy (internal HV bus)		±1	±2	VDC
Current monitoring				
Accuracy (battery chargers, avionics)		±0.1	±0.2	A _{DC}
Accuracy (28VDC bus)		±0.2	±0.4	Add
Accuracy (servo, payload)		±0.4	±0.8	Add
Temperature monitoring				
Accuracy (PMU)		±1		°C
Accuracy (batteries, BLDC motor) Note 1		±1		°C
Speed monitoring				
Accuracy (BLDC motor)		±150		RPM

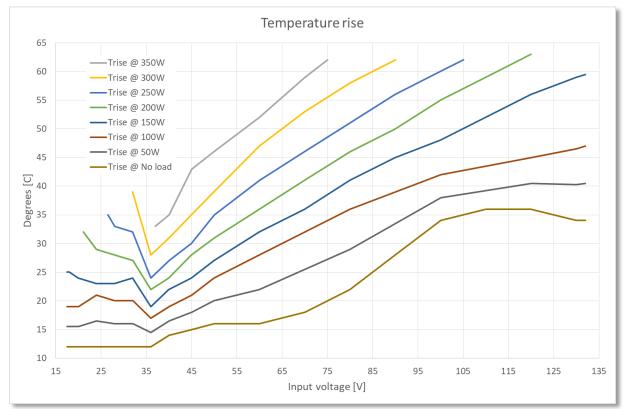
Table 15 – Monitoring

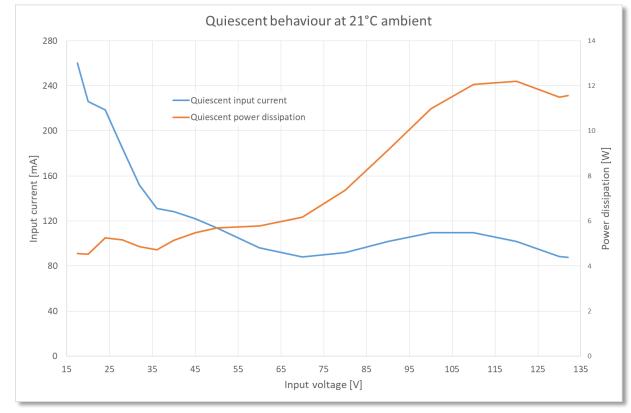
Note 1: Using external 10k NTC temperature sensor.


8.4 Typical Characteristics

8.4.1 28V Buck-Boost converter efficiency

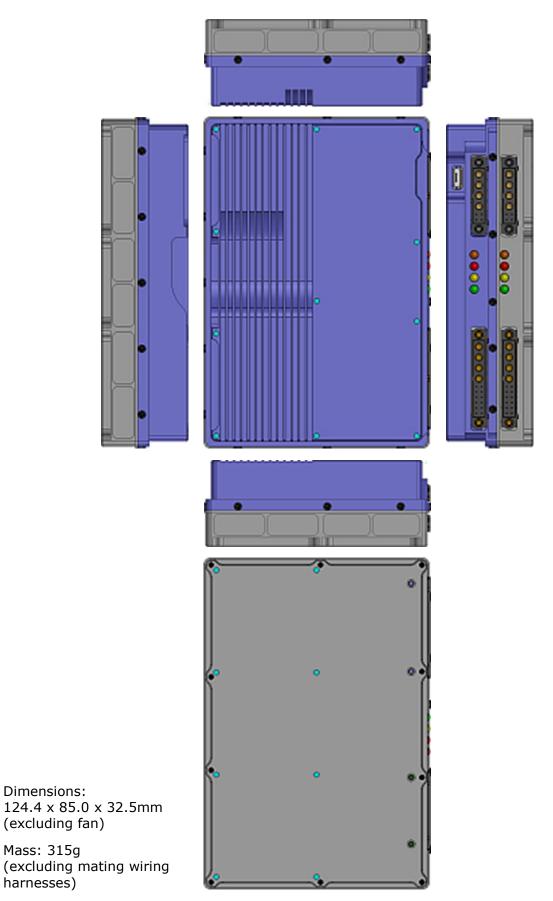
Graph 1 – 28V Buck-Boost converter efficiency




Graph 2 – 28V Buck-Boost converter maximum output power

MILLSWOOD

8.4.3 28V Buck-Boost converter temperature rise


Graph 3 – 28V Buck-Boost converter temperature rise

8.4.4 28V Buck-Boost converter quiescent behaviour

Graph 4 – 28V Buck-Boost converter quiescent behaviour

8.5 Mechanical Characteristics

Download the Step files from https://millswoodeng.com.au/cad/250w pmu enclosure.zip

8.5.1 Mounting

The underside of the enclosure has $10 \times M2$ tapped holes for mounting the PMU to a flat surface. A template for drilling holes into the mounting surface is given in Figure 7 below:

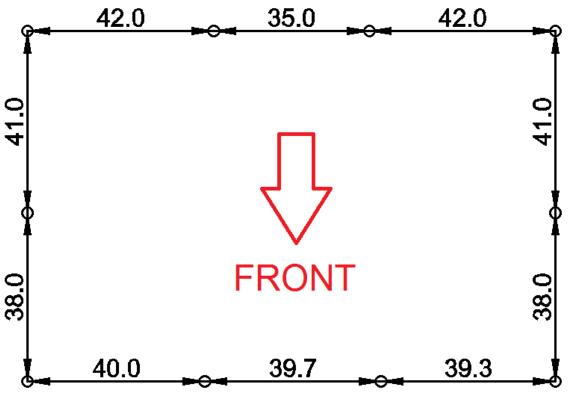


Figure 7 – Mounting hole locations

Be careful not to distort the enclosure by mounting to a warped surface. Mounting screws should project no more than 4.0mm into the enclosure.

9 Document version history

9.1 1.5 -> 2.0

- RPM range changed from 4:1 to 7:1. Multiple places.
- Battery voltage lower limit changed from 16.8V to 20.0V. Multiple places.
- BLDC motor upper voltage limit changed from 72V to 130V. Multiple places.
- Umbilical input upper voltage limit changed from 48V to 65V. Multiple places.
- Safe Operating Area management section deleted.
- Discussion of Master shutdown input added. Multiple places.
- Maximum Payload and Servo voltages graph deleted.
- Electrical specifications updated.
- Typical characteristics updated.
- Discussion of battery charge termination algorithm added.
- Appendices deleted.
- Temperature sensor type changed from KTY83 to 10k NTC. Multiple places.

9.2 2.0 -> 2.1

• 28VDC bus description changed from bi-directional to output. Multiple places.